15

13

- **10**. An apparatus for removing scratch noise from a digitized image, comprising:
 - means for identifying a scratch noise area in said digitized image data;
 - means for defining repair window data which contains the identified scratch noise area;
 - means for defining sample window data which is chosen so as to resemble the features and values of said repair window data;
 - means for transforming said repair window data and said sample window data to data of a frequency domain;
 - means for generating new image data based upon said repair window transformed data and said sample window transformed data;
 - means for inverse-transforming said new image data; means for generating new repair window data based upon said new image data; and
 - means for replacing said repair window data with said new repair window data.
- 11. The apparatus of claim 10, wherein means for transforming uses a Fourier transform.
 - 12. The apparatus of claim 10, further comprising: means for conforming values of said new image data to predefined limits.
- 13. The apparatus of claim 10, wherein said new image data is generated using a DC magnitude value of a repair window frequency spectrum.
- 14. The apparatus of claim 13, wherein said new image data is generated using a smaller of a magnitude of said ³⁰ repair window frequency spectrum and a magnitude of the sample window frequency spectrum.
 - 15. The apparatus of claim 10 further comprising:
 - means for generating mask data which distinguishes pixels within the area of said identified scratch noise from pixels within a remainder of said image, wherein
 - said new repair window data is generated based upon said new image data, repair window data and said mask data.
- 16. The apparatus of claim 15, wherein said mask data is 40 binary data.
- 17. A program storage device readable by a machine, tangibly embodying a program of instructions executable by the machine to perform method steps for removing scratch noise from a digitized image, the method steps comprising:

 45

identifying a scratch noise area in said digitized image data;

- defining repair window data which contains the identified scratch noise area;
- defining sample window data which is chosen so as to resemble the features and values of said repair window data;
- transforming said repair window data and said sample window data to data of a frequency domain;
- generating new image data based upon said repair window transformed data and said sample window transformed data;

inverse-transforming said new image data;

- generating new repair window data based upon said new 60 image data; and
- replacing said repair window data with said new repair window data.
- **18**. The program storage device of claim **17**, wherein said step of transforming uses a Fourier transform.
- 19. The program storage device of claim 17, wherein the method further comprises the step of:

14

conforming values of said new image data to predefined limits.

- 20. The program storage device of claim 17, wherein said new image data is generated using a DC magnitude value of a repair window frequency spectrum.
- 21. The program storage device of claim 20, wherein said new image data is generated using a smaller of a magnitude of said repair window frequency spectrum and a magnitude of the sample window frequency spectrum.
- 22. The program storage device of claim 17, wherein the method further comprises the steps of:
 - generating mask data which distinguishes pixels within the area of said identified scratch noise from pixels within a remainder of said image, wherein
 - said new repair window data is generated based upon said new image data, repair window data and said mask data.
- 23. The program storage device of claim 22, wherein said mask data is binary data.
- **24.** A recording medium having digital data recorded thereon, the recording medium being prepared by the steps of:
 - identifying a scratch noise area in said digitized image data:
 - defining repair window data which contains the identified scratch noise area;
 - defining sample window data which is chosen so as to resemble the features and values of said repair window data:
 - transforming said repair window data and said sample window data to data of a frequency domain;
 - generating new image data based upon said repair window transformed data and said sample window transformed data;
- inverse-transforming said new image data;
 - generating new repair window data based upon said new image data;
 - replacing said repair window data with said new repair window data; and
 - recording said new repair window data on the recording medium.
- 25. The recording medium of claim 24, wherein said step of transforming uses a Fourier transform.
- 26. The recording medium of claim 24, further comprising the step of:
 - conforming values of said new image data to predefined limits.
- 27. The recording medium of claim 24, wherein said new 50 image data is generated using a DC magnitude value of a repair window frequency spectrum.
 - 28. The recording medium of claim 27, wherein said new image data is generated using a smaller of a magnitude of said repair window frequency spectrum and a magnitude of the sample window frequency spectrum.
 - 29. The recording medium of claim 24, further comprising the steps of:
 - generating mask data which distinguishes pixels within the area of said identified scratch noise from pixels within a remainder of said image, wherein
 - said new repair window data is generated based upon said new image data, repair window data and said mask data.
- **30**. The recording medium of claim **29**, wherein said mask data is binary data.
 - 31. A program storage device readable by a machine, tangibly embodying a program of instructions executable by